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Abstract

In this paper, the existence of step-like contrast structure for a class of singularly

perturbed optimal control problem is shown by the contrast structure theory. By

means of direct scheme of boundary function method, we construct the uniformly

valid asymptotic solution for the singularly perturbed optimal control problem. Fi-

nally, an example is presented to show the result.
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1. Introduction

The contrast structure in a singularly perturbed problem is mainly classified as a step-like

contrast structure or a spike-like contrast structure (see [1]-[3]). This issue is called as

internal layer solution problem in western [4]. A step-like contrast structure problem is

only concerned in this paper. Its fundamental characteristics is that there exists an t∗(or

multiple t∗) within the domain of interest, which is called as an internal transition time.

The position of t∗ is unknown in advance if there exists an internal layer solution and it

needs to be determined thereafter. In the neighborhood of t∗, the solution y(t, µ) will have

an abrupt structure change and in the different sides of t∗, y(t, µ) will approach to different

reduced solutions when the small parameter µ → 0. The contrast structure has a strong
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application background. For example, in the study of physics , there are cases that their

solutions vary rapidly in the interior of domain.

In recent years, the study on contrast structures is still a hot but difficult research

topic in the theory of singularly perturbed problem. In Russia, the most study on contrast

structures is by the boundary function method, and in Western, the study on this issue

is by the method of dynamic systems or geometric method [5]. More and more scholars

begin to pay attention to the contrast structure of variational problem. In [6], [7], the

authors consider the contrast structures for the simplest vector variational problem and

scalar variational problem. One of the basic difficulties for such a problem is unknown of

where an internal transition layer is in advance.

Currently, there are mainly two ways to solve this problem. The first way is through

the boundary function method [8]. Usually, this method is applied to necessary or suffi-

cient optimality conditions. The second alternative is through direct scheme of boundary

function method, which consists in a direct expansion of the optimal control problem. we

will apply the direct scheme to the singularly perturbed optimal control problem. As a

result of the scheme, we get a minimizing control sequence, each new control approximation

decreases the performance index of the given problem. It should be noted that the direct

scheme not only make it easy to obtain the relations for the high-order approximations,

but also show the nature of the optimal control problem.

The theory of boundary value problems with integral boundary conditions arises in

different areas of applied mathematics and physics. For example, thermal conduction [9],

semiconductor problems [10], biomedical science [11], and the references therein. In [12], the

authors consider the existence of contrast structure for the following singularly perturbed

differential equations with integral boundary conditions

µ2d2y

dt2
= f(t, y), 0 < t < 1,

y(0, µ) =

∫ 1

0

h1(y(s, µ))ds, y(1, µ) =

∫ 1

0

h2(y(s, µ))ds,

by using of the theory of differential equalities.

In this present paper, the singularly perturbed optimal control problem with integral

boundary conditions is considered, we not only prove the existence of step-like contrast

structure for the singularly perturbed optimal control problem, but also construct asymp-

totic solution to the optimal controller and optimal trajectory.
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2. Problem Formulation

Consider the singularly perturbed optimal control problem



























J [u] =

∫ T

0

f(y, u, t) dt → min
u

,

µ
dy

dt
= u,

y(0, µ) =

∫ T

0

h1(y(s, µ))ds , y(T, µ) =

∫ T

0

h2(y(s, µ))ds.

(2.1)

where µ > 0 is a small parameter.

The following assumptions are fundamental in the theory for the problem in question.

[A1] Suppose that f(y, u, t) and hi are sufficiently smooth on the domain D = {(y, u, t)| |
y |< A, u ∈ R, 0 ≤ t ≤ T}, where A is positive constant, i = 1, 2.

[A2] Suppose that fu2(y, u, t) > 0 on the domain D.

Formally setting µ = 0 in (2.1), we obtain the reduced problem

J [ū] =

∫ T

0

f(ȳ, ū, t) dt → min
ū

, ū = 0. (2.2)

For our convenience, problem (2.2) can be written in the following equivalent form

J [ū] =

∫ T

0

F (ȳ, t)dt → min
ȳ

,

where F (ȳ, t) = f(ȳ, 0, t).

[A3] Suppose that there exist two isolated functions ȳ = ϕ1(t) , ȳ = ϕ2(t) such that

min
ȳ

F (ȳ, t) =







F (ϕ1(t), t) 0 ≤ t ≤ t0,

F (ϕ2(t), t), t0 ≤ t ≤ T,
(2.3)

lim
t→t−0

ϕ1(t) 6= lim
t→t+0

ϕ2(t).

[A4] Suppose that the transition point t0 is determined by the following equation

F (ϕ1(t0), t0) = F (ϕ2(t0), t0),

and satisfies the condition

d

dt
F (ϕ1(t0), t0) 6=

d

dt
F (ϕ2(t0), t0).
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It follows from assumption [A3] that






Fy(ϕ1(t), t) = 0, Fyy(ϕ1(t), t) > 0, 0 ≤ t ≤ t0,

Fy(ϕ2(t), t) = 0, Fyy(ϕ2(t), t) > 0, t0 ≤ t ≤ T.
(2.4)

Consider the Hamiltonian function

H(y, u, λ, t) = f(y, u, t) + λµ−1u,

where λ is Lagrange multiplier.

The necessary optimality conditions imply that


































µy′ = u,

λ′ = −fy(y, u, t),

µfu(y, u, t) + λ(t) = 0,

y(0, µ) =

∫ T

0

h1(y(s, µ))ds , y(T, µ) =

∫ T

0

h2(y(s, µ))ds.

(2.5)

From (2.5), we can obtain the following singularly perturbed boundary value problem






















µy′ = u,

µu′ = f−1
u2 (fy − fuyu) − µf−1

u2 fut,

y(0, µ) =

∫ T

0

h1(y(s, µ))ds , y(T, µ) =

∫ T

0

h2(y(s, µ))ds,

(2.6)

problem of type (2.6) was considered in [12], in which the existence of solution with step-

like contrast structure was shown. By means of the result as described in [12], we show the

existence of optimal trajectory with step-like contrast structure.

3. Existence of Step-like Contrast Structure

As was mentioned above, problem of type (2.6) was considered in [12], therefore, under

suitable conditions, the extremal trajectory (the solution to the system of Euler equations

(2.6)) contains a step-like contrast structure.

It is easy to see that the associated system for (2.6) can be written as










du

dτ
= f−1

u2 (fy − fuyu),

dy

dτ
= u.

(3.1)

Now we will state and prove some useful lemmas, which we will use to prove our main

results. We begin with the following lemma.
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Lemma 3.1 Suppose that [A1]-[A4] hold. Then associated system (3.1) has two equilibria

Mi(ϕi(t̄), 0), i = 1, 2 , which are both saddle points.

Proof. Let

H(y, u, t̄) = f−1
u2 (fy − fuyu),

G(y, u, t̄) = u.

Obviously, Mi(ϕi(t̄), 0), i = 1, 2 are two isolated solutions of the reduced system

H(y, u, t̄) = 0,

G(y, u, t̄) = 0.

Moreover, the characteristic equation of the system (3.1) is given by

λ2 − f̄y2

f̄u2

= 0,

where f̄y2 , and f̄u2 are calculated in (ϕi(t̄), 0), i = 1, 2. Using assumption (2.4), we obtain

λ2 =
f̄y2

f̄u2

> 0.

Hence, in the phase plane (y, u), Mi(ϕi(t̄), 0), i = 1, 2 are both saddle points.

Lemma 3.2 For fixed t̄ ∈ [0, T ], associated system (3.1) has a first integral

ufu(y, u, t̄) − f(y, u, t̄) = C, (3.2)

where C is a constant.

Proof. Let y′ =
dy

dτ
, u′ =

du

dτ
. Then the first equation in (3.1) can be written as

fu2(y, u, t̄)u′ = fy(y, u, t̄) − fuy(y, u, t̄)u, (3.3)

using the second equation of (3.1) , we get

fu2(y, u, t̄)u′ − fy(y, u, t̄) + fuy(y, u, t̄)y′ = 0. (3.4)

In view of y′′ = u′, we obtain

d

dτ
(y′fu(y, u, t̄) − f(y, u, t̄)) = 0.

Therefore, the first integral for (3.1) is

ufu(y, u, t̄) − f(y, u, t̄) = C,

where C is a constant.
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Lemma 3.3 Suppose that [A1], [A2] and u 6= 0 hold. Then, for fixed t̄ ∈ [0, T ], the first

integral (3.2) is solvable with respect to u.

Proof. Let

G(y, u, t̄) = ufu(y, u, t̄) − f(y, u, t̄) − C,

Obviously

Gu(y, u, t̄) = fu(y, u, t̄) + ufu2(y, u, t̄) − fu(y, u, t̄) = ufu2 6= 0,

by the implicit function theorem , the equation G(y, u, t̄) = 0 is solvable with respect to u:

u = h(y, t̄, C), (y, t̄) ∈ D1. (3.5)

where D1 = {(y, t)| | y |< A, 0 ≤ t ≤ T}.

let us continue the verification of the assumptions of [12]. Obviously, there exist two

separate orbits SM1 and SM1 that pass through the saddle points M1 and M2, which satisfy

the equations

SM1 : ufu(y, u, t̄) − f(y, u, t̄) = −f(ϕ1(t̄), 0, t̄), (3.6)

SM2 : ufu(y, u, t̄) − f(y, u, t̄) = −f(ϕ2(t̄), 0, t̄). (3.7)

It follows from Lemma 3.3 that

u(−)(τ, t̄) = h(−)(y(−), t̄, ϕ1(t̄)), (3.8)

u(+)(τ, t̄) = h(+)(y(+), t̄, ϕ2(t̄)). (3.9)

Let

H(t̄) = u(−)(0, t̄) − u(+)(0, t̄) = h(−)(y(−)(0), t̄, ϕ1(t̄)) − h(+)(y(+)(0), t̄, ϕ2(t̄)),

where y(−)(0) = y(+)(0) =
1

2
(ϕ1(t̄) + ϕ2(t̄)) = β(t̄).

Lemma 3.4 Suppose that [A1]-[A4] hold. Then, we get

hy(ϕi(t̄), t̄) = ±
√

fy2(ϕi(t̄), 0, t̄)

fu2(ϕi(t̄), 0, t̄)
, i = 1, 2.
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Proof. Differentiating the implicit function, we have

hy(y, t̄) =
du

dy
=

fy − ufuy

ufu2

.

Using L’Hospital’s rule , in the neighborhood of saddle points, we obtain

hy(ϕi(t̄), t̄) = ±
√

fy2(ϕi(t̄), 0, t̄)

fu2(ϕi(t̄), 0, t̄)
, i = 1, 2.

Lemma 3.5 Suppose that [A1]-[A4] hold. Then H(t0) = 0 if and only if

f(ϕ1(t0), 0, t0) = f(ϕ2(t0), 0, t0).

Proof. Setting τ = 0, t̄ = t0 in (3.6) and (3.7), we obtain

h(−)(t0)fu(β(t0), h
(−)(t0), t0) − f(β(t0), h

(−)(t0), t0) = −f(ϕ1(t0), 0, t0), (3.10)

h(+)(t0)fu(β(t0), h
(+)(t0), t0) − f(β(t0), h

(+)(t0), t0) = −f(ϕ2(t0), 0, t0), (3.11)

where

h(−)(t0) = h(−)(β(t0), ϕ1(t0), t0), h(+)(t0) = h(+)(β(t0), ϕ2(t0), t0),

Necessity follows directly from (3.10), (3.11) and sufficiency follows from (3.5).

Lemma 3.6 Suppose that [A1]-[A4] hold. Then
d

dt
H(t0) 6= 0 if and only if

d

dt
f(ϕ1(t0), 0, t0) 6=

d

dt
f(ϕ2(t0), 0, t0).

Proof. Setting τ = 0 in (3.6) and (3.7), we get

h(−)(t̄)fu(β(t̄), h(−)(t̄), t̄) − f(β(t̄), h(−)(t̄), t̄) = −f(ϕ1(t̄), 0, t̄), (3.12)

h(+)(t̄)fu(β(t̄), h(+)(t̄), t̄) − f(β(t̄), h(+)(t̄), t̄) = −f(ϕ2(t̄), 0, t̄), (3.13)

where

h(−)(t̄) = h(−)(β(t̄), ϕ1(t̄), t̄), h(+)(t̄) = h(+)(β(t̄), ϕ2(t̄), t̄),

Differentiating (3.12) and (3.13) with respect to t̄, we obtain

d

dt̄
(h(−)(t̄))fu(β(t̄), h(−)(t̄), t̄) + h(−)(t̄)

d

dt̄
(fu(β(t̄), h(−)(t̄), t̄))
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− d

dt̄
f(β(t̄), h(−)(t̄), t̄) = − d

dt̄
f(ϕ1(t̄), 0, t̄), (3.14)

d

dt̄
(h(+)(t̄))fu(β(t̄), h(+)(t̄), t̄) + h(+)(t̄)

d

dt̄
(fu(β(t̄), h(+)(t̄), t̄))

− d

dt̄
f(β(t̄), h(+)(t̄), t̄) = − d

dt̄
f(ϕ2(t̄), 0, t̄), (3.15)

let t̄ = t0 yields

h(−)(t0)fu2(β(t0), h
(−)(t0), t0)

d

dt̄
H(t0)

= −(
d

dt̄
f(ϕ1(t0), 0, t0) −

d

dt̄
f(ϕ2(t0), 0, t0)).

From assumptions [A1] and [A2], also since the different orbits do not intersect the line

ū = 0 at the point y = β(t0), hence
d

dt
H(t0) 6= 0 if and only if

d

dt
f(ϕ1(t0), 0, t0) 6=

d

dt
f(ϕ2(t0), 0, t0).

From Lemma 3.2 and Lemma 3.5, it is easy for us to get the next Lemma.

Lemma 3.7 Suppose that [A1]-[A4] hold. Then there exists t̄ = t0 at which associated sys-

tem (3.1) has a heteroclinic orbit connecting saddle points M1(ϕ1(t0), 0) and M2(ϕ2(t0), 0).

From the above discussions, we know that the boundary value problem (2.6) satisfies

all the assumptions of [12]. Then problem (2.1) has an extremal trajectory y(t, µ) with a

step-like contrast structure. From Theorem 3.3 of [12], we can obtain the following theorem.

Theorem 3.8 Suppose that [A1]-[A4] hold. Then for sufficiently small µ > 0, the optimal

control problem (2.1) has an extremal trajectory y(t, µ) with a step-like contrast structure

lim
µ→0

y(t, µ) =







ϕ1(t), 0 ≤ t < t0,

ϕ2(t), t0 < t ≤ T.

4. Construction of Asymptotic Solution

an asymptotic solution of problem (2.1) is sought in the form



















y(t, µ) =

∞
∑

k=0

µk(ȳk(t) + Lky(τ0) + Q
(−)
0 y(τ)), 0 ≤ t < t∗,

u(t, µ) =
∞
∑

k=0

µk(ūk(t) + Lku(τ0) + Q
(−)
0 u(τ)),

(4.1)
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

















y(t, µ) =

∞
∑

k=0

µk(ȳk(t) + Q
(+)
0 y(τ) + Rky(τ1)), t∗ < t ≤ T,

u(t, µ) =
∞
∑

k=0

µk(ūk(t) + Q
(+)
0 u(τ) + Rku(τ1)),

(4.2)

where τ0 = tµ−1, τ = (t− t∗)µ−1, τ1 = (t− T )µ−1, Lky(τ0) are coefficients of boundary

layer terms at t = 0, Rk(τ1) are coefficients of boundary layer terms at t = T , Q
(∓)
k (τ) are

left and right coefficients of internal transition terms at t = t∗.

The position of a transition time t∗(µ) ∈ [0, T ] is unknown in advance. Suppose that t∗

has also asymptotic expression of the form t∗ = t0 + µt1 + · · ·+ µktk + · · ·. The coefficients

of the above series are determined during the construction of an asymptotic solution.

From the main results of [6], we obtain

min
u

J [u] = min
u0

J(u0) +

n
∑

i=1

µi min
ui

J̃i(ui) + · · · ,

where J̃i(ui) = Ji(ui, ũi−1, · · · , ũ0) , ũk = arg(min
uk

J̃k(uk)) , k = 0, i − 1.

Substituting (4.1), (4.2) into (2.1) and equating separately the terms on t, τ0, τ and

τ1 by the boundary function method, we can obtain a series of variational problems to

determine {ȳk(t), ūk(t)}, {Lky(τ0), Lku(τ0)}, {Q∓
k y(τ), Q∓

k u(τ)}, {Rky(τ1), Rku(τ1)}, k ≥ 0

respectively.

The variational problem to determine the zero-order coefficients of regular terms {ȳ0(t),

ū0(t)} are given by











J0(ū0) =

∫ T

0

f(ȳ0, ū0, t) dt → min
ū0

,

ū0 = 0.

By assumption [A3] , we get

ȳ0 =







ϕ1(t) , 0 ≤ t < t0,

ϕ2(t) , t0 < t ≤ T,

ū0 =







0 , 0 ≤ t < t0,

0 , t0 < t ≤ T,
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The following variational problems to determine {Q(∓)
0 y(τ), Q

(∓)
0 u(τ)} are given by



























Q
(∓)
0 J =

∫ 0(+∞)

−∞(0)

∆
(∓)
0 f(ϕ1,2(t0) + Q

(∓)
0 y, α1,2(t0) + Q

(∓)
0 u, t0) dτ → min

Q
(∓)
0 u

,

d

dτ
Q

(∓)
0 y = Q

(∓)
0 u,

Q
(∓)
0 y(0) = β(t0) − ϕ1,2(t0), Q

(∓)
0 y(∓∞) = 0,

(4.3)

where

∆
(∓)
0 f = f(ϕ1,2(t0) + Q

(∓)
0 y, Q

(∓)
0 u, t0) − f(ϕ1,2(t0), 0, t0).

Making the substitutions

ỹ(∓) = ϕ1,2(t0) + Q
(∓)
0 y(τ), ũ(∓) = Q

(∓)
0 u(τ).

we obtain


























Q
(∓)
0 J =

∫ 0(+∞)

−∞(0)

∆
(∓)
0 f̃(ỹ(∓)(τ), ũ(∓)(τ), t0) dτ → min

ũ(∓)(ỹ(∓))
,

dỹ(∓)

dτ
= ũ(∓),

ỹ(∓)(0) = β(t0), ỹ(∓)(∓∞) = ϕ1,2(t0).

(4.4)

The substitution
dỹ(∓)

ũ(∓)
= dτ,

produces the following variational problem, which is explicitly independent of τ

Q
(∓)
0 J =

∫ β(t0)(ϕ2(t0))

ϕ1(t0)(β(t0))

∆0f̃(ỹ(∓), ũ(∓), t0)

ũ(∓)
dỹ → min

ũ(∓)(ỹ(∓))
, (4.5)

the necessary condition for a minimum of the integrand has the form

ũ(∓)fu(ỹ
(∓), ũ(∓), t0) − f(ỹ(∓), ũ(∓), t0) = −f(ϕ1,2(t0), 0, t0),

in view of (3.6) and (3.7), we see that ũ(∓) = h(∓)(ỹ(∓), t0) is the minimum, since it satisfies

ũ(∓)fu2(ỹ(∓), ũ(∓), t0)

ũ(∓)2
> 0.

From the necessary condition of (4.5), we have

ũ(∓)fu(ỹ
(∓), ũ(∓), t0) − f(ỹ(∓), ũ(∓), t0) = −f(ϕ1,2(t0), 0, t0),

by lemma 3.3, we can obtain ũ(∓) = h(∓)(ỹ, t0). Using the second expression of (4.4) and

the conditions of (4.4), it is easy for us to get the following initial problems










dQ
(∓)
0 y

dτ
= h(∓)(ϕ1,2(t0) + Q

(∓)
0 y, t0),

Q
(∓)
0 y(0) = β(t0) − ϕ1,2(t0),
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Here the Q
(∓)
0 y(τ), −∞ < τ < +∞ are determined.

Substituting Q
(∓)
0 y(τ) into (4.3), we can obtain Q

(∓)
0 u(τ), thus Q

(∓)
0 y(τ) and Q

(∓)
0 u(τ)

are determined. From Lemma 3.4 we get h
(−)
y (ϕ1(t0), t0) > 0, h

(+)
y (ϕ2(t0), t0) < 0, which

imply that

|Q(−)
0 y(τ)| ≤ C

(−)
0 eκ0τ , κ0 > 0, τ < 0,

|Q(+)
0 y(τ)| ≤ C

(+)
0 e−κ1τ , κ1 > 0, τ > 0,

|Q(−)
0 u(τ)| ≤ C

(−)
1 eκ0τ , κ0 > 0, τ < 0,

|Q(+)
0 u(τ)| ≤ C

(+)
1 e−κ1τ , κ1 > 0, τ > 0.

Next, we give the equations and their conditions for determining {L0y
∗(τ0), L0u

∗(τ0)}
as follows































L0J =

∫ ∞

0

∆0f(ϕ1(0) + L0y, L0u, 0) dτ0 → min
L0u

,

d

dτ0
L0y = L0u,

L0y(0) =

∫ t0

0

h1(ϕ1(s))ds +

∫ T

t0

h1(ϕ2(s))ds − ϕ1(0), L0y(∞) = 0,

(4.6)

where

∆0f = f(ϕ1(0) + L0y, L0u, 0) − f(ϕ1(0), 0, 0),

and the problem to determine {R0y
∗(τ1), R0u

∗(τ1)} is given by






























R0J =

∫ 0

−∞
∆0f(ϕ2(T ) + R0y, R0u, T ) dτ1 → min

R0u
,

d

dτ1

R0y = R0u,

R0y(0) =

∫ t0

0

h2(ϕ1(s))ds +

∫ T

t0

h2(ϕ2(s))ds − ϕ2(T ), R0y(−∞) = 0,

(4.7)

where

∆0f = f(ϕ2(T ) + R0y, R0u, T ) − f(ϕ2(T ), 0, T ).

Similarly as the discussions of Q
(∓)
0 y(τ) , we can get the following initial problems







dL0y

dτ0
= h(ϕ1(0) + L0y, 0),

L0y(0) =
∫ t0
0

h1(ϕ1(s))ds +
∫ T

t0
h1(ϕ2(s))ds − ϕ1(0),

and






dR0y

dτ1

= h(ϕ2(T ) + L0y, T ),

R0y(0) =
∫ t0
0

h2(ϕ1(s))ds +
∫ T

t0
h2(ϕ2(s))ds − ϕ2(T ),

EJQTDE, 2011 No. 46, p. 11



Here the L0y(τ0) and R0y(τ1), 0 ≤ τ0 < +∞,−∞ < τ1 ≤ 0 are determined.

Substituting L0y(τ0) into (4.6) and R0y(τ1) into (4.7), it is easy for us to get L0u(τ0)

and R0u(τ1), thus L0y(τ0), R0y(τ1), L0u(τ0) and R0u(τ1) are determined. From Lemma 3.4

we get hy(ϕ1(0), 0) < 0, hy(ϕ2(T ), T ) > 0, which imply that

|L0y(τ0)| ≤ C
(−)
2 e−κ2τ0 , κ2 > 0, τ0 > 0,

|R0y(τ1)| ≤ C
(+)
2 eκ3τ1 , κ3 > 0, τ1 < 0,

|L0u(τ0)| ≤ C
(−)
3 e−κ2τ0 , κ2 > 0, τ0 > 0,

|R0u(τ1)| ≤ C
(+)
3 eκ3τ1 , κ3 > 0, τ1 < 0.

[A5] Suppose that the boundary data

β(t0) − ϕ1,2(t0),

∫ t0

0

h1(ϕ1(s))ds +

∫ T

t0

h1(ϕ2(s))ds − ϕ1(0),

∫ t0

0

h2(ϕ1(s))ds +

∫ T

t0

h2(ϕ2(s))ds − ϕ2(T ),

in the problems Q
(∓)
0 J , L0J and R0J belong to certain neighborhoods of the origin that

guarantee the existence of solutions in these problems.

Remark 4.9 Assumption [A5] is analogous to Tikhonov’s conditions, which require that

the boundary data belong to the domains of influence of the corresponding asymptotically

stable equilibria of the associated systems.

Remark 4.10 In the general case, the asymptotic approximation to the control is not an

admissible control, since it drives the trajectory from the initial point only to an O(µ)

neighborhood of the terminal point. For t ∈ [0, t0], The zero-order asymptotic solution is

Y0 = ϕ1(t) + L0y(τ0) + Q
(−)
0 y(τ), Y0 is not an admissible solution, as was shown in [12], we

obtain

Y0(0, µ) − y0µ(0, µ) = p0(µ) 6= 0, Y0(t0, µ) − y0µ(t0, µ) = p1(µ) 6= 0,

where pi(µ) = O(e−
t0
µ ), i = 0, 1. To get an admissible solution y0µ, we need to add a

smoothing function θ0(t, µ), then y0µ = Y0(t, µ) + θ0(t, µ), u0µ = µ
dy0µ

dt
, where θ0(t, µ) =

Ae−t/µ + Be(t−t0)/µ, while

A = (−p0(µ) + e−t0/µp1(µ))(1 − e−2t0/µ)−1,

B = (−p1(µ) + e−t0/µp0(µ))(1 − e−2t0/µ)−1,
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y0µ is an admissible solution, since it satisfies the boundary condition, then we get the

admissible control

u0µ = µϕ′
1(t) + L0u(τ0) + Q

(−)
0 u(τ) − Ae−t/µ + Be(t−t0)/µ, t ∈ [0, t0],

similarly, we also have

u0µ = µϕ′
2(t) + Q

(+)
0 u(τ) + R0u(τ1) − Āe−(t−t0)/µ + B̄e(t−T )/µ, t ∈ [t0, T ],

where

Ā = (−p̄0(µ) + e(t0−T )/µp̄1(µ))(1 − e2(t0−T )/µ)−1,

B̄ = (−p̄1(µ) + e(t0−T )/µp̄0(µ))(1 − e2(t0−T )/µ)−1,

It should be noted that the smoothing functions are exponentially small.

Then, we have so far constructed the leading terms

{ȳ∗
0(t), ū∗

0(t)}, {L0y
∗(τ0), L0u

∗(τ0)}, {Q0y
∗(τ), Q0u

∗(τ)}, {R0y
∗(τ1), R0u

∗(τ1)}.

of asymptotic series for the problem (4.1) and (4.2). Additionally, we can obtain the

minimum values of the corresponding optimal control problems J∗
0 , L0J

∗, Q
(∓)
0 J∗, R0J

∗:

J∗
0 (ū0) =

∫ T

0

f(ȳ∗
0, ū

∗
0, t) dt,

L0J
∗ =

∫ ϕ1(0)

y0

∆
(∓)
0 f(y̌∗, ǔ∗, 0)

ǔ∗
dy̌∗,

Q
(∓)
0 J∗ = ±

∫ β(t0)

ϕ1,2(t0)

∆
(∓)
0 f(ỹ(∓)∗, ũ(∓)∗, t0)

ũ(∓)∗
dỹ∗,

R0J
∗ =

∫ yT

ϕ2(T )

∆
(∓)
0 f(ŷ∗, û∗, T )

û∗
dŷ∗,

where

y̌∗ = ϕ1(0) + L0y
∗(τ0), ǔ = L0u

∗(τ0),

ŷ∗ = ϕ2(T ) + R0y
∗(τ1), û∗ = R0u

∗(τ1).

Next, we will show the validity of the formal solution.

Theorem 4.11 Suppose that [A1]-[A5] hold. Then for sufficiently small µ > 0 there exists

a step-like contrast structure solution y(t, µ) of the problem (2.1), moreover, the following

asymptotic expansion holds

y(t, µ) =







ϕ1(t) + L0y(τ0) + Q
(−)
0 y(τ) + O(µ), 0 ≤ t < t0 + µt1,

ϕ2(t) + R0y(τ1) + Q
(+)
0 y(τ) + O(µ), t0 + µt1 < t ≤ T.
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Proof of Theorem 4.11. In [12] the authors consider the existence of contrast struc-

ture for the following singularly perturbed differential equations with integral boundary

conditions






















µ
dy

dt
= z,

µ
dz

dt
= f(t, y),

y(0, µ) =
∫ 1

0
h1(y(s, µ))ds, y(1, µ) =

∫ 1

0
h2(y(s, µ))ds.

It should be noted that the proof of Theorem 4.11 has no essential difference from that of

Theorem 3.3 in [12], but some slight modifications, such as change t ∈ [0, 1] into t ∈ [0, T ],

so we omit the details of the proof.

5. Example

In this section, an example is shown how to construct a zero order asymptotic solution

with a step-like contrast structure. Consider the problem



























J [u] =

∫ 2π

0

(1

4
y4 − 1

3
y3 sin t − 1

2
y2 + y sin t +

1

2
u2

)

dt → min
u

,

µ
dy

dt
= u,

y(0, µ) =

∫ 2π

0

y3(s, µ)ds , y(2π, µ) =

∫ 2π

0

y5(s, µ)ds.

(5.1)

Let

f(y, u, t) =
1

4
y4 − 1

3
y3 sin t − 1

2
y2 + y sin t +

1

2
u2,

for every t, we have

ȳ0(t) =







−1, 0 ≤ t < π,

1, π < t ≤ 2π.

min
ȳ

F (ȳ0, t) =







−1

4
− 2

3
sin t, 0 ≤ t ≤ π,

−1
4

+ 2
3
sin t, π ≤ t ≤ 2π.

The transition point t0 = π is determined by the equation sin t0 = 0.

Firstly, we determine Q
(∓)
0 y and Q

(∓)
0 u. By using of (3.6) and (3.7), t̄ = π, we get

u2 − (
1

4
y4 − 1

2
y2 +

1

2
u2) =

1

4
,
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from our construction, we obtain the different orbit SM1 and SM2, which pass through the

saddle points M1(t̄) and M2(t̄) respectively, have the form

SM1 : u(−) =

√
2

2
(1 − y(−)2), SM2 : u(+) =

√
2

2
(1 − y(+)2),

by means of
d

dτ
Q

(∓)
0 y = Q

(∓)
0 u, ū0(t) = 0, then the left and right zero-order terms of

transition layer are determined by the following problems

dQ
(∓)
0 y

dτ
=

√
2

2
(1 − (∓1 + Q

(∓)
0 y)2) , Q

(∓)
0 y(0) = ±1, Q

(∓)
0 y(∓∞) = 0.

Its solution are

Q
(−)
0 y =

2e
√

2τ

1 + e
√

2τ
, Q

(−)
0 u =

2
√

2e
√

2τ

(1 + e
√

2τ )2
,

Q
(+)
0 y =

−2

1 + e
√

2τ
, Q

(+)
0 u =

2
√

2e
√

2τ

(1 + e
√

2τ )2
.

Similarly, the problems to determine left and right boundary layer are

dL0y

dτ0

= −
√

2

2
(1 − (−1 + L0y)2) , L0y(0) = 1, L0y(+∞) = 0,

dL0y

dτ0

= L0u.

dR0y

dτ1
= −

√
2

2
(1 − (1 + R0y)2) , R0y(0) = −1, R0y(−∞) = 0,

dR0y

dτ1
= R0u.

so we have

L0y =
2e−

√
2τ0

1 + e−
√

2τ0
, L0u =

−2
√

2e−
√

2τ0

(1 + e−
√

2τ0)2
,

R0y =
−2e

√
2τ1

1 + e
√

2τ1
, R0u =

−2
√

2e
√

2τ1

(1 + e
√

2τ1)2
.

Finally, the formal asymptotic solution is

y(t, µ) =















−1 +
2e−

√
2τ0

1 + e−
√

2τ0
+

2e
√

2τ

1 + e
√

2τ
+ O(µ), 0 ≤ t < π,

1 +
−2

1 + e
√

2τ
+

−2e
√

2τ1

1 + e
√

2τ1
+ O(µ), π < t ≤ 2π.
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